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Excitons that coexist with a degenerate two-dimensional electron gas
in the same quantum well subband have been observed in the
photoluminescence from the recombination of electrons with
localized photoexcited holes. At a critical electron density, an abrupt
decrease in the exciton radiative recombination rate is observed, along
with the formation of biexcitons. With increased excitation intensity,
photoluminescence spectra are observed that verify theory on the
radiative renormalization of biexcitons and strongly indicate the
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occurrence of a Bose-Einstein condensation of biexcitons.
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Introduction
In certain semiconductors, excitons (electron-hole bound states) and
biexcitons (exciton-exciton bound states) are expected to undergo Bose-
Einstein condensation (BEC) at relatively high temperatures because of
their small effective masses, which are typically on the order of the free
electron mass [1–3]. Experimental results have shown that excitons in
Cu2O [4] and Ge [5] and biexcitons in CuCl [6] exhibit quantum degener-
ate Bose-Einstein statistics at high densities, as well as anomalous lumi-
nescence and ballistic transport, which have been attributed to the occur-
rence of BEC [7–12]. The sharp luminescence features observed [7] and an
increased optical phase-conjugate signal have been attributed to the
presence of a resonant two-photon absorption-induced condensate of
biexcitons in CuCl. A recent report [12] describes the condensation of
spatially indirect excitons in coupled AlAs/GaAs quantum wells (QWs),
as evidenced by anomalous exciton transport and the concurrent appear-
ance of a huge low-frequency noise in the photoluminescence (PL) inten-
sity. Theory has shown that BEC of a two-dimensional (2D) ideal Bose gas
in a confining potential can occur [13]; however, weakly interacting 2D
bosons in a confining potential are predicted to undergo a Kosterlitz-
Thouless phase transition instead of BEC, because of the absence of
infinitely long-ranged phase coherence [14]. Huang [2] points out, how-
ever, that in 2D systems the existence of phase coherence over a large
finite distance could lead to a local BEC.

My colleagues and I have recently observed [15] excitons that coexist with
a degenerate 2D electron gas (2DEG) in the same subband (that is, Mahan
excitons) in the PL spectra from the recombination of quasi-2D electrons
with localized photoexcited holes in a single heterojunction quantum well
(SHQW). When the 2DEG density ns ≈ 1.9 × 1011 cm–2, we observed an
abrupt decrease in the quasi-2D Mahan exciton (X) PL intensity and
linewidth, along with the formation of quasi-2D biexcitons (XX) and a
large discontinuity in the X groundstate energy. These intriguing observa-
tions led to a high-resolution study of the PL from this system as the
excitation intensity is increased with ns ≈ 1.9 × 1011 cm2. I report here the
observation of PL spectra that strongly indicate the occurrence of the BEC
of weakly localized quasi-2D biexcitons (XX) and verify recent theory on
the radiative renormalization of XX [16].

Research on coherent effects and condensation of excitons and biexcitons
has grown significantly in recent years. Potential future applications of
this research include the development of a nonlasing coherent source of
emission, the phase-coherent transport of optical signals through
nanometer-scale devices in optical computers, and the efficient transport
of light into near-field optical microscope tips [1].
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Experimental Results
The experiments were carried out on an AlGaAs/GaAs modulation-
doped coupled-well heterostructure [16], shown schematically in figure 1.
Shubnikov-de Haas measurements at 4.2 K show that the 2DEG is con-
fined in only the lowest subband of the SHQW, formed by the transfer of
electrons from the doped AlGaAs into the lower bandgap GaAs. I varied
the 2DEG density ns by applying a voltage Vg to a Schottky contact on the
120-µm-thick substrate, as shown in figure 1. Measurements show that ns
varies linearly with Vg with a depletion rate dns/dVg ≈ 6.3 × 108 cm–2V–1.
The samples were mounted in a variable-temperature liquid helium
cryostat and excited with a 5145-Å emission from an argon ion laser, with
intensities up to approximately 2 W/cm2. The PL spectrum was measured
with a 1-m monochromator.

The observed 6 K PL over the range from 1557 to 1545 meV is the super-
position of (1) the sharp, resonant PL from the spatially direct recombina-
tion of weakly localized quasi-2D Mahan excitons and (2) the relatively
broad PL from the spatially direct recombination of free electrons with
localized heavy holes in the SHQW [16]. The observed PL over the 1545 to
1535 meV energy range is attributed to the spatially indirect recombina-
tion of SHQW electrons with photoexcited holes, which are localized 100
to 150 Å from the AlGaAs/GaAs interface [16]. In the presence of a 2DEG,
the X eigenstates will depend on various many-body interactions and
effects [17]. Over the range 1.9 × 1011 cm–2 < ns < 2.2 × 1011 cm–2, the
spatially direct X emission results in a strong resonance in the observed
PL intensity at the X groundstate energy Een = 1553 meV. Around ns ≈ 1.9
× 1011 cm–2, an abrupt large decrease in the 1553-meV X PL intensity and
linewidth occurs, along with the appearance of another sharp peak in the
PL spectrum near 1551 meV, as shown in figure 2 for Vg = –38 V.

The observed abrupt decrease in the 1553-meV X PL intensity at ns ≈ 1.9 ×
1011 cm–2 signifies that there is a suppression of the recombination rate
(possibly due to many-body effects), with an attendant increase in the
radiative lifetime of the 1553-meV X. The increased lifetime will result in
increases in the X density and the exciton/exciton scattering rate and
possibly the achievement of thermal equilibrium with the lattice—
conditions that are conducive to the formation of biexcitons [3]. A phe-
nomenological model for the decay of an XX into a photon and an X,
which subsequently radiatively decays, results in a double-peak emission
spectrum consisting of the X peak at Een and an XX spectrum whose
high-energy edge is lower than Een by an amount equal to the XX binding
energy. The high-energy edge of the XX PL spectrum arises from the
emission from biexcitons that occupy the groundstate. The 1551-meV
feature is observed only over the narrow range of ns where the 1553-meV
X has a reduced recombination rate; this fact strongly suggests that the
1551-meV feature can be attributed to the formation and subsequent
radiative decay of biexcitons in the SHQW and precludes the possibility
that the 1551-meV peak is the emission from the recombination of
impurity-bound excitons. The observed separation of the X and XX peaks
gives an XX binding energy of approximately 2 meV, which is consistent
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with recent experimental reports of 1.8 to 2.7 meV for 80 to 100 Å GaAs
QWs [18–21].

I varied ns slightly around the value ns ≈ 1.9 × 1011 cm–2 to minimize the
1553-meV peak amplitude and, using enhanced resolution, studied the
evolution of the PL lineshape as the excitation power I is increased. The
observed high-resolution 6 K PL data plotted in figure 3 clearly show that,
with increasing I, the XX PL at 1551 meV increases at a faster rate than the
1553-meV X PL, in agreement with previous observations [22–24]. Figure
3 shows that, for Vg = –37.3 V, the XX PL lineshape evolves strikingly: at I
= 0.3 mW, it has a small relatively broad peak, and at I = 0.75 mW, it has a
large, very narrow peak at 1551 meV and a distinctive cusp at 1551.5 meV.
Concurrently (for Vg = –37.3 V, I = 0.75 mW), the figure shows large low-
frequency fluctuations in the PL intensity over the range 1546 meV to
1535 meV. Figure 3 also shows that the PL observed under the same
conditions (Vg = –37.3 V, I = 0.75 mW) is extremely sensitive to ns, as
evidenced by the abrupt decrease in XX PL intensity and the disappear-
ance of the very narrow 1551-meV line and the low-frequency PL inten-

Figure 1. Schematic
of backgated
coupled-well
bandstructure for
(a) negative gate
voltage and
(b) positive gate
voltage.
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Figure 2. Observed
PL spectra from
SHQW with Vg =
–38 V at 6, 15, and
25 K.
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sity fluctuations when Vg is changed to –38 V; this change corresponds to
reducing ns by only 4 × 108 cm–2. The intersection of the –37.3 and the
–38 V PL spectra (both 0.75 mW) at 1548 meV gives an approximate
amplitude of the PL from 2D free-electron/localized-hole (e-h) recombina-
tion; this amplitude is not sensitive to slight changes in ns, varies linearly
with I, and can be approximated by a square pulse lineshape. Figure 4
shows approximate lineshapes of the combined PL from X and XX, which
I obtained by subtracting the estimated e-h PL from the data shown in
figure 3.

Figure 4 shows that as the XX density increases, the XX PL narrows over
the range from 1548 to 1552.5 meV. The half-maximum width of the low-
energy side of the XX PL, which is determined by the XX energy distribu-
tion, decreases from 1.6 meV (for I = 0.3 mW, Vg = –37.3 V) (bottom
curves, fig. 4a) to 1 and 1.2 meV (for I = 0.75 mW, Vg = –37.3 V and –38 V)
(both curves, fig. 4b). The observed narrowing of the XX energy distribu-
tion with increasing XX density confirms that the biexcitons obey Bose-
Einstein statistics and that, for I = 0.75 mW, the XX are in the quantum
degenerate regime [9], where a significant fraction of the 2D XX have
small wavevectors. In the quantum degenerate regime, polariton (mixed
exciton-photon state) effects are predicted [17] to significantly
renormalize the XX dispersion, resulting in a shift in the location of the
groundstate and an increase in the XX binding energy from the unper-
turbed value of ~1 meV [25] to 2.2 meV, which agrees with the observed
value of 2 meV.

Figure 3. Observed
6 K PL spectra for I =
0.3, 0.46, and 0.75 mW
with Vg = –37.3 V
(solid lines) and I =
0.75 mW, Vg = –38 V
(dashed lines).
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Figure 4.
Approximate X and
XX 6 K PL lineshapes
(a) for I = 0.3, 0.46,
and 0.75 mW and Vg =
–37.3 V; (b) for I =
0.75 mW, Vg = –37.3 V
(solid line); I = 0.75
mW, Vg = –38 V
(dashed line). Label g
marks appearance of
narrow 1551-meV
line; label h marks
cusp at 1551.5 meV.
Label X marks
coherent polarization
mode; label X – marks
negatively charged
exciton at 1552 meV.
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Discussion
The large increase in the 6 K XX PL intensity and the abrupt appearance
of the very narrow 1551-meV line (labeled g in fig. 4a) in the XX PL
spectrum for Vg = –37.3 V, I = 0.75 mW, together with the extreme sensi-
tivity of this XX PL spectrum to small changes in ns, suggest that the very
narrow 1551-meV line comes from the recombination of XX that have
undergone BEC into the groundstate. This conclusion is also supported
by the close resemblance of the distinctive lineshape of the observed XX
PL for Vg = –37.3 V, I = 0.75 mW, to the calculated [3] emission spectrum
for three-dimensional Bose-condensed biexcitons. The remarkable disap-
pearance of the very narrow 1551-meV line and the change in the XX PL
lineshape when ns is reduced by only 4 × 108 cm–2 (as shown in fig. 4b)
can only be explained by a decrease in XX density: from a density greater
than the critical density for BEC when Vg = –37.3 V, to a density smaller
than the critical density when Vg is changed to –38 V. The calculated
critical density [14] for BEC of the weakly localized quasi-2D XX at 6 K is
approximately 2 × 1010 cm–2, assuming that the localization energy for the
XX is ≈3 meV (the observed value for the hole localization energy [16])
and that the XX effective mass equals the free electron mass. Figure 2
shows that at 15 K the amplitude of the XX PL is strongly reduced com-
pared to the X peak, and the XX PL no longer has a sharp peak near 1551
meV, indicating that the XX are not quantum degenerate at 15 K.

As shown in figure 4b, the cusp at 1551.5 meV (labeled h) observed for
Vg = –37.3 V, I = 0.75 mW, evolves into a sharp resonance at 1551.2 meV
for Vg = –38 V, I = 0.75 mW. This resonance is attributed to the theoreti-
cally predicted [17] van Hove singularity in the biexciton-polariton joint
density of states, which is expected to be manifested in the XX PL spec-
trum as a peak that is ~0.4 meV higher in energy than the XX groundstate
energy [3,17]. The shift in the location of the van Hove singularity when
BEC occurs provides evidence that BEC results in significant modification
of the XX dispersion. Figure 4 shows that when BEC occurs, the observed
X PL narrows, and its peak shifts by 0.2 meV to lower energy; these
changes suggest that the radiative decay of condensed X results in the
formation of a coherent polariton mode (labeled X in fig. 4). The
1552-meV resonance, labeled X– in figure 4 (which is observed only when
the X recombination rate is suppressed near ns ≈ 1.9 × 1011 cm–2), is not
sensitive to small changes in ns, but increases with increasing excitation
intensity. The observed 1-meV separation between the X and X– peaks
suggests that the X– resonance can be attributed to the emission from
negatively charged excitons, which have been recently observed in
modulation-doped quantum well structures [26]. The X– consists of two
electrons bound to a single hole, with a calculated binding energy for the
second electron of 1 to 1.4 meV for GaAs quantum wells [27].

In addition to the above striking changes in the XX PL when Vg = –37.3 V,
I = 0.75 mW, figure 3 shows concurrent large low-frequency fluctuations
(peak-to-peak times of 20 to 60 s) in the PL intensity over the range 1546
to 1535 meV, despite the fact that each data point was obtained after
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averaging over a 10-s interval. The energy range over which the anoma-
lous PL intensity fluctuations are observed shows that they come from the
recombination of XX composed of at least one spatially indirect X. Similar
large low-frequency fluctuations in the PL intensity of spatially indirect
condensed excitons have been observed before [13]. In the absence of
BEC, the PL intensity exhibits the relatively small shot noise associated
with the Poisson distribution of randomly emitted photons from indepen-
dent recombination of XX. Statistical mechanics shows that BEC of an
open system of bosons is accompanied by the onset of large fluctuations
in the occupancy of the groundstate [28]. Furthermore, these fluctuations
in the condensate population must be phase coherent, as pointed out by
Nozieres [1]. A coherent fluctuation in the steady-state nonequilibrium
groundstate occupancy of condensed XX will regress via coherent radia-
tive recombination with a characteristic fluctuation time τf, which deter-
mines the spectral density of the PL intensity fluctuations. Since a large
number of excitons must acquire the appropriate spatial configuration for
coherent recombination of condensed XX, one would expect τf to depend
on and be much larger than the X radiative lifetime, which ranges up to
1 µs for spatially indirect X [29]. I conclude that the observed large low-
frequency noise (large τf) in the PL intensity is a manifestation of XX
coherence; this observation provides strong evidence of the BEC of XX.
The data indicate that for spatially direct XX, τf « 10 s.
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Conclusion
In summary, excitons that coexist with a degenerate two-dimensional
electron gas in the same quantum well subband have been observed in
the photoluminescence from the recombination of electrons with localized
photoexcited holes. At a critical electron density, an abrupt decrease in the
exciton radiative recombination rate is observed, along with the forma-
tion of biexcitons. With increased excitation intensity, I observe photolu-
minescence spectra that are sensitive to electron density, verify theory on
the radiative renormalization of biexcitons, and strongly indicate the
occurrence of a Bose-Einstein condensation of weakly localized quasi-
two-dimensional biexcitons.
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